| Enrollment No: | Exam Seat No: |
|----------------|---------------|
|----------------|---------------|

## **C.U.SHAH UNIVERSITY**Summer Examination-2017

**Subject Name: Fluid Mechanics** 

Subject Code: 4TE04FME1 Branch: B.Tech (Mechanical, Automobile)

Semester: 4 Date: 05/05/2017 Time: 02:00 To 05:00 Marks: 70

## **Instructions:**

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

| Q-1 |            | Attempt the following questions:                                              | (14) |
|-----|------------|-------------------------------------------------------------------------------|------|
|     | a)         | Define fluid.                                                                 | 01   |
|     | <b>b</b> ) | Define adhesion.                                                              | 01   |
|     | <b>c</b> ) | Define centre of pressure.                                                    | 01   |
|     | d)         | State the continuity equation for incompressible flow.                        | 01   |
|     | <b>e</b> ) | Which type of notch has reasonably stable value of discharge co-efficient for | 01   |
|     | ,          | different operating conditions?                                               |      |
|     | f)         | State name of any 1 efflux viscometer.                                        | 01   |
|     | <b>g</b> ) | Define sonic flow.                                                            | 01   |
|     | <b>h</b> ) | Define Mach Number                                                            | 01   |
|     | i)         | The volumetric change of the fluid caused by a resistance is known as         | 01   |
|     |            | (a) volumetric strain                                                         |      |
|     |            | (b) volumetric index                                                          |      |
|     |            | (c) compressibility                                                           |      |
|     |            | (d) adhesion                                                                  |      |
|     | j)         | Which of the following is dimensionless                                       | 01   |
|     |            | (a) specific weight                                                           |      |
|     |            | (b) specific volume                                                           |      |
|     |            | (c) specific speed                                                            |      |
|     |            | (d) specific gravity                                                          |      |
|     | k)         | A balloon lifting in air follows the following principle                      | 01   |
|     |            | (a) law of gravitation                                                        |      |
|     |            | (b) Archimedes principle                                                      |      |
|     |            | (c) principle of buoyancy                                                     |      |
|     |            | (d) all of the above                                                          |      |
|     | 1)         | Choose the correct relationship                                               | 01   |
|     | -          | (a) specific gravity = gravity x density                                      |      |
|     |            | (b) dynamic viscosity = kinematic viscosity x density                         |      |





|            |            | (c) gravity = specific gravity x density                                                                                    |       |
|------------|------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
|            |            | (d) kinematic viscosity = dynamic viscosity x density                                                                       |       |
|            | m)         | For manometer, a better liquid combination is one having                                                                    | 01    |
|            |            | (a) higher surface tension                                                                                                  |       |
|            |            | (b) lower surface tension                                                                                                   |       |
|            |            | (c) surface tension is no criterion                                                                                         |       |
|            |            | (d) high density and viscosity                                                                                              |       |
|            | n)         | The property of fluid by virtue of which it offers resistance to shear is called                                            | 01    |
|            |            | (a) surface tension                                                                                                         |       |
|            |            | (b) adhesion                                                                                                                |       |
|            |            | (c) cohesion                                                                                                                |       |
|            |            | (d) viscosity                                                                                                               |       |
| Attem      | pt any f   | four questions from Q-2 to Q-8                                                                                              |       |
| Q-2        |            | Attempt all questions                                                                                                       | (14)  |
|            | a)         | State, explain and prove Pascal's law for fluid.                                                                            | 07    |
|            | <b>b</b> ) | Derive formula to determine Metacentric height using analytical method.                                                     | 07    |
| Q-3        |            | Attempt all questions                                                                                                       | (14)  |
|            | <b>a</b> ) | What is Venturimeter? Derive an expression for the discharge through a                                                      | 07    |
|            |            | Venturimeter.                                                                                                               |       |
|            | <b>b</b> ) | Describe journal, foot step and collar bearing.                                                                             | 03    |
|            | <b>c</b> ) | Explain Reynold's experiment                                                                                                | 04    |
| Q-4        |            | Attempt all questions                                                                                                       | (14)  |
|            | <b>a</b> ) | A plate 0.03 mm distant from fixed plate moves at 70 cm/s and requires force per                                            | 03    |
|            |            | unit area equal to 3 N/m <sup>2</sup> to maintain this speed. Calculate fluid viscosity between                             |       |
|            |            | the plates.                                                                                                                 |       |
|            | <b>b</b> ) | State and explain various types of pressure with neat sketch.                                                               | 04    |
|            | <b>c</b> ) | Derive the expression for velocity distribution and ratio of maximum velocity to                                            | 07    |
| o =        |            | average velocity for viscous flow through circular pipes.                                                                   | (4.4) |
| Q-5        | `          | Attempt all questions                                                                                                       | (14)  |
|            | <b>a</b> ) | State and explain various model or similarity laws                                                                          | 04    |
|            | <b>b</b> ) | State and explain various similarities between model and prototype.                                                         | 03    |
|            | c)         | Water flows over a rectangular weir of width 1.5 m at a depth of 10 cm and then                                             | 07    |
|            |            | passes through a triangular right angled weir. Determine the depth of water                                                 |       |
|            |            | through triangular weir. Take discharge co-efficient for the rectangular and triangular weir as 0.63 and 0.58 respectively. |       |
| Q-6        |            | Attempt all questions                                                                                                       | (14)  |
| Q-u        | a)         | The lift force $F_L$ on the air foil depends upon the mass density of medium $\rho$ ,                                       | 07    |
|            | a)         | velocity of flow V, characteristic length l, viscosity $\mu$ , and angle of incidence $\alpha$ .                            | 07    |
|            |            | Obtain an expression for the lift force using Buckingham's $\pi$ -theorem.                                                  |       |
|            | <b>b</b> ) | The head of water over an orifice of diameter 30 mm is 9 m. Find the actual                                                 | 07    |
|            | U)         | discharge and actual velocity of the jet at vena-contracta. Take $C_d = 0.62$ and $C_v =$                                   | 97    |
|            |            | 0.98. Also calculate co-efficient of contraction.                                                                           |       |
| Q-7        |            | Attempt all questions                                                                                                       | (14)  |
| <b>~</b> ' | a)         | Derive Euler's equation of motion along a stream line and hence generate                                                    | 07    |
|            | )          | Bernoulli's equation.                                                                                                       | 07    |



|     | <b>b</b> ) | Derive Continuity equation for 3D.                                               | 07   |
|-----|------------|----------------------------------------------------------------------------------|------|
| Q-8 |            | Attempt all questions                                                            | (14) |
|     | a)         | Discuss various cases for propagation of pressure waves in a compressible fluid. | 07   |
|     | <b>b</b> ) | Derive Darchy- Weisbach equation for the head loss due to friction in pipes.     | 07   |

